50. **Removable sets for intrinsic metric and for holomorphic functions** (with Sergei Kalmykov and Tapio Rajala).

Preprint

49. **Symmetrization and extension of planar bi-Lipschitz maps**, *Ann. Acad. Sci. Fenn. Math.*, to appear.

Preprint

48. **Uniform convergence of Green’s functions** (with Sergei Kalmykov).

Preprint

47. **On the existence of harmonic mappings between doubly connected domains** (with Liulan Li), *Proc. Roy. Soc. Edinburgh Sect. A*, to appear.

Preprint

46. **Lipschitz retractions in Hadamard spaces via gradient flow semigroups** (with Miroslav Bačák), *Canad. Math. Bull.* 59 (2016), no. 4, 673–681.

Journal Preprint

45. **Conformal contractions and lower bounds on the density of harmonic measure**, *Potential Analysis* 46 (2017), no. 2, 385-391.

Journal Preprint

44. **Lipschitz retraction of finite subsets of Hilbert spaces**, *Bull. Aust. Math. Soc.* 93 (2016), no. 1, 146-151.

Journal Preprint

43. **Bi-Lipschitz embedding of projective metrics**, *Conform. Geom. Dyn.* 18 (2014), 110-118.

Journal Preprint

42. **Symmetric products of the line: embeddings and retractions**, *Proc. Amer. Math. Soc.* 143 (2015), 801-809.

Journal Preprint

41. **Sharp distortion growth for bilipschitz extension of planar maps**, *Conform. Geom. Dyn.* 16 (2012), 124-131.

Journal Preprint

**Note:** The proof of inequality (3.3) contains a slight mistake, but the inequality itself is true. In order to correct the proof, one should replace “Let ρ = dist(ζ, Γ_{j})” at the bottom of page 126 with “Let ρ = dist(ζ, Γ_{1}) – |ζ|”. Then the statement “∂Ω ∩ B(0, ρ) is disjoint from Γ_{1}” is true, and the rest proceeds as written, including the inequality (ρ − |ζ|)/(ρ + |ζ|) ≤ sin(3π/8). Solve this inequality for ρ to get ρ ≤ 29|ζ|, hence dist(ζ, Γ_{1}) ≤ 30|ζ| as is claimed in (3.3).

40. **Lipschitz regularity for inner-variational equations** (with Tadeusz Iwaniec and Jani Onninen), *Duke Math. J.* 162 (2013), no. 4, 643-672.

Journal Preprint

39. **Approximation up to the boundary of homeomorphisms of finite Dirichlet energy** (with Tadeusz Iwaniec and Jani Onninen), *Bull. London Math. Soc.* 44 (2012), no. 5, 871-881.

Journal Preprint

38. **Quasisymmetric graphs and Zygmund functions** (with Jani Onninen), *J. Anal. Math.* 118 (2012), no. 1, 343-361.

Journal Preprint

37. **The Hopf-Laplace equation: harmonicity and regularity** (with Jan Cristina, Tadeusz Iwaniec, and Jani Onninen), *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)* 13 (2014), no. 4, 1145-1187.

Journal Preprint

36. **Harmonic mapping problem in the plane** (with Jani Onninen), *J. Anal.* 18 (2010), 279–295.

Journal

35. **Diffeomorphic approximation of Sobolev homeomorphisms** (with Tadeusz Iwaniec and Jani Onninen), *Arch. Rat. Mech. Anal.* 201 (2011), no. 3, 1047–1067.

Journal Preprint

34. **Existence of energy-minimal diffeomorphisms between doubly connected domains** (with Tadeusz Iwaniec, Ngin-Tee Koh, and Jani Onninen), *Invent. Math.* 186 (2011), no. 3, 667–707.

Journal Preprint

33. **Hopf differentials and smoothing Sobolev homeomorphisms** (with Tadeusz Iwaniec and Jani Onninen), *Int. Math. Res. Not. IMRN* 2012 (2012), no. 14, 3256-3277.

Journal Preprint

32. **The harmonic mapping problem and affine capacity** (with Tadeusz Iwaniec and Jani Onninen), *Proc. Roy. Soc. Edinburgh Sect. A* 141 (2011), no. 5, 1017–1030.

Journal Preprint

**Note:** A part of the proof of Theorem 1.5, namely Case 1 in section 4.3, misses the possibility that the domain is the complement of the union of a line segment with *two* half-lines, all lying on the same line. Such a domain (“double Teichmüller ring”) can be treated similarly to the ordinary Teichmüller ring; no new ideas are required. The missing details were later supplied in paper #47 listed above.

31. **Doubly connected minimal surfaces and extremal harmonic mappings** (with Tadeusz Iwaniec and Jani Onninen), *J. Geom. Anal.* 22 (2012), no. 3, 726–762.

Journal Preprint

30. **Area contraction for harmonic automorphisms of the disk** (with Ngin-Tee Koh), *Bull. London Math. Soc.* 43 (2011), no. 1, 91–96.

Journal Preprint

29. **The Nitsche conjecture** (with Tadeusz Iwaniec and Jani Onninen), *J. Amer. Math. Soc.* 24 (2011), no. 2, 345–373.

Journal Preprint

28. **Projections and idempotents with fixed diagonal and the homotopy problem for unit tight frames** (with Julien Giol, David Larson, Nga Nguyen, and James Tener), *Operators and Matrices* 5 (2011), no. 1, 139–155.

Journal Preprint

27. **Invertibility of Sobolev mappings under minimal hypotheses** (with Jani Onninen and Kai Rajala), *Ann. Inst. H. Poincaré Anal. Non Linéaire* 27 (2010), no. 2, 517–528.

Journal Preprint

26. **An N-dimensional version of the Beurling-Ahlfors extension** (with Jani Onninen), *Ann. Acad. Sci. Fenn. Math.* 36 (2011), 321–329.

Journal Preprint

25. **Harmonic mappings of an annulus, Nitsche conjecture and its generalizations** (with Tadeusz Iwaniec and Jani Onninen), *Amer. J. Math.* 132 (2010), no. 5, 1397–1428.

Journal Preprint

24. **Variation of quasiconformal mappings on lines** (with Jani Onninen), *Studia Math.* 195 (2009), no. 3, 257–274.

Journal Preprint

**Note:** A result similar to Proposition 2.1 was proved by Robert Kaufman in **Sobolev spaces, dimension, and random series**, * Proc. Amer. Math. Soc.* **128** (2000), no. 2, 427–431.

23. **On invertibility of Sobolev mappings** (with Jani Onninen), *J. Reine Angew. Math.* 2011 (2011), no. 656, 1–16.

Journal Preprint

22. **Dynamics of quasiconformal fields** (with Tadeusz Iwaniec and Jani Onninen), *J. Dynam. Differential Equations* 23 (2011), no. 1, 185–212.

Journal Preprint

21. **On injectivity of quasiregular mappings** (with Tadeusz Iwaniec and Jani Onninen), *Proc. Amer. Math. Soc.* 137 (2009), no. 5, 1783–1791.

Journal Preprint

20. **A geometric approach to accretivity**, *Studia Math.* 181 (2007), no. 1, 87–100.

Journal

19. **Doubling measures, monotonicity, and quasiconformality** (with Diego Maldonado and Jang-Mei Wu), *Math. Z.* 257 (2007), no. 3, 525–545.

Journal Preprint

18. **Convex functions and quasiconformal mappings** (with Diego Maldonado), in *Harmonic analysis, partial differential equations, and related topics*, 93–104, Contemporary Math., vol. 428, Amer. Math. Soc., 2007.

Proceedings Preprint

17. **Hyperbolic and quasisymmetric structure of hyperspaces** (with Jeremy Tyson), in *In the tradition of Ahlfors-Bers, IV*, 151–166, Contemporary Math., vol. 432, Amer. Math. Soc., 2007.

Proceedings Preprint

16. **Quasiconformal geometry of monotone mappings**, *J. London Math. Soc.* 75 (2007), no. 2, 391–408.

Journal

15. **Conformal dimension does not assume values between zero and one**, *Duke Math. J.* 134 (2006), no. 1, 1–13.

Journal

14. **Mappings with convex potentials and the quasiconformal Jacobian problem** (with Diego Maldonado), *Illinois J. Math.* 49 (2005), no. 4, 1039–1060.

Journal

13. **On Hölder regularity for elliptic equations of non-divergence type in the plane** (with Albert Baernstein), *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)* 4 (2005), 295–317.

Journal Preprint

12. **Comparison theorems for the one-dimensional Schrödinger equation**, *Ark. Mat.* 43 (2005), no. 2, 403–418.

Journal

11. **Quasiregular gradient mappings and strong solutions of elliptic equations** (with David Opěla), in *The p-harmonic equation and recent advances in analysis*, 145–157, Contemporary Math. vol. 370, AMS, 2005.

Proceedings Preprint

10. **On G-compactness of the Beltrami operators** (with Flavia Giannetti, Tadeusz Iwaniec, Gioconda Moscariello, and Carlo Sbordone), in *Nonlinear homogenization and its applications to composites, polycrystals and smart materials*, 107–138, NATO Science Series II, vol. 170, Kluwer, 2004.

9. **Hölder spaces of quasiconformal mappings,** *Publ. Inst. Math. (Beograd)* 75 (89) (2004), 87–94.

Journal

8. **Quasiregular mappings of maximal local modulus of continuity, ** *Ann. Acad. Sci. Fenn. Math.* 29 (2004), 211–222.

Journal

7. **Boundary values of mappings of finite distortion** (with Jani Onninen), *Rep. Univ. Jyväskylä Dep. Math. Stat.* 92 (2003), 175–182.

Preprint

6. **Monotonicity of the generalized reduced modulus,** *J. Math. Sci., New York * 118 (2003), no.1, 4861–4870; translation from * Zap. Nauchn. Sem. S-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) * 276 (2001), * Anal. Teor. Chisel i Teor. Funkts. * 17, 219–236.

In Russian In English

5. **Estimates of conformal radius and distortion theorems for univalent functions, ** *J. Math. Sci., New York * 110 (2002), no. 6, 3111–3120; translation from *Zap. Nauchn. Sem. S-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) * 263 (2000), *Anal. Teor. Chisel i Teor. Funkts. * 16, 141–156.

In Russian In English

4. **Domains with convex hyperbolic radius,** *Acta Math. Univ. Comenianae* 70 (2001), no. 2, 207–213.

Journal

3. **The reduced modulus of the complex sphere** (with Vladimir Dubinin), *J. Math. Sci., New York * 105 (2001), no. 4, 2165–2179; translation from *Zap. Nauchn. Sem. S-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) * 254 (1998), *Anal. Teor. Chisel i Teor. Funkts. * 15, 76–94.

In Russian In English

2. **On the inner radii of symmetric nonoverlapping domains**, *Russian Math. (Iz. VUZ)* 44 (2000), no. 6, 77–78; translation from *Izv. Vyssh. Uchebn. Zaved. Mat.* (2000), no. 6, 80–81.

PDF file

1. **On the problem of extremal partitioning with free poles on the circle**, * Dal’nevost. Mat. Sb.* 2 (1996), 96–98. (In Russian).

PDF file